$0.22 \times 0.18 \times 0.14 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Bromopropyl 2-(2-chlorophenyl)-2-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)acetate

Ji-Fang Chen,^a Ying Liu,^b* Jing-Yang Wang^b and Deng-Ke Liu^b

^aMaterials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, and ^bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: liudk@tjipr.com

Received 14 October 2010; accepted 17 December 2010

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.097; data-to-parameter ratio = 16.3.

In the crystal structure of the title compound, $C_{18}H_{19}BrCl-NO_2S$, weak $C-H\cdots O$ interactions help to establish the packing.

Related literature

The title compound is a derivative of the antiplatelet agent clopidogrel [systematic name (+)-(S)-methyl 2-(2-chloro phenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetate]. For background to the bioactivity and applications of clopidogrel, see: Muller *et al.* (2003); Savi *et al.* (1994); Sharis *et al.* (1998). For the synthesis of other derivatives with thienopyridine, see: Aubert *et al.* (1985); Bouisset & Radisson (1991); Savi *et al.* (1992); Bipin *et al.* (2002); Eric & Hiralal (1989); Liu *et al.* (2008); Silva (2004).

Experimental

Crystal data $C_{18}H_{19}BrClNO_2S$ $M_r = 428.76$ Monoclinic, $P2_1/n$ a = 8.5707 (17) Å b = 18.414 (4) Å

c = 12.206 (2) A
$\beta = 106.89 \ (3)^{\circ}$
$V = 1843.3 (7) \text{ Å}^3$
Z = 4

 $\mu = 5.52 \text{ mm}^{-1}$ T = 113 K

Data collection

Rigaku Saturn diffractometer18506 measured reflectionsAbsorption correction: multi-scan
(CrystalClear; Rigaku, 2005)3546 independent reflections $T_{min} = 0.377, T_{max} = 0.512$ $R_{int} = 0.055$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 217 parameters $wR(F^2) = 0.097$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.34$ e Å $^{-3}$ 3546 reflections $\Delta \rho_{min} = -0.69$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C2 - H2 \cdots O1^{i}$ $C7 - H7A \cdots O1$	0.95	2.43	3.340 (3)	161
	0.99	2.50	3.103 (3)	119
$C8 - H8 \cdots CI1$	1.00	2.58	3.110 (2)	113
$C16 - H16B \cdots Br1$	0.99	2.91	3.323 (3)	106

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

The authors thank Mr Hai-Bin Song of Nankai University, for the X-ray crystallographic determination and for helpful suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2241).

References

Aubert, D., Ferrand, C. & Maffrand, J. P. (1985). US Patent 4 529 596. Bipin, P., Bhushan, L. V. & Bhushan, L. B. (2002). WO Patent 02/059128 A2.

Bouisset, M. & Radisson, J. (1991). US Patent 5 036 156.

- Eric, L. & Hiralal, N. K. (1989). Eur. Patent 0 342 118 A1.
- Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.
- Muller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). *Circulation*, **108**, 2195–2197.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.
- Savi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). *Thromb. Haemost.* 72, 313–317.

Savi, P., Herbert, J. M., Pflieger, A. M., Dol, F., Delebassee, D., Combalbert, J., Defreyn, G. & Maffrand, J. P. (1992). *Biochem. Pharmacol.* 44, 527–532.

- Sharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394– 405.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silva, R. A. (2004). WO Patent 2004/094374 A2.

supplementary materials

Acta Cryst. (2011). E67, o221 [doi:10.1107/S1600536810053134]

3-Bromopropyl 2-(2-chlorophenyl)-2-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)acetate

J.-F. Chen, Y. Liu, J.-Y. Wang and D.-K. Liu

Comment

Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Muller *et al.*, 2003; Aubert *et al.*, 1985; Bipin *et al.*, 2002; Bouisset & Radisson, 1991; Eric & Hiralal, 1989; Liu *et al.*, 2008; Silva 2004; Savi *et al.*, 1992; Savi *et al.*, 1994; Sharis *et al.*, 1998). The molecular structure of the title compound (Fig. 1), a derivative of clopidogrel, is reported here.

As shown in Fig. 1, there is a chiral carbon (C8) in the compound, and the benzene ring, the ester chain and the thienopyridine group are all linked to C8 and a molecular chiral center is formed. The thiophene ring of the thienopyridine group forms a plane and the C9–C14 benzen ring forms another plane. The dihedral angle formed between them is 65.46 (9)°. The packing molecules in crystal is consolidated by weak C—H…O, C—H…Cl and C—H…Br interactions.

Experimental

The title compound was prepared according to the literature (Aubert *et al.*, 1985). A mixture of α -bromo(2–chloro)phenyl acetic acid (5 g, 20 mmol), 3–bromo–1–propanol (20 g, 144 mmol) and *p*–toluenesulfonic acid (1.0 g, 5.8 mmol) in toluene (50 ml) was refluxed for 2 h. The reaction mixture was washed with saturated sodium bicarbonate (100 ml) and then with distilled water (50 ml), dried with sodium sulfate and evaporated, to give colourless oil (98% yield). The colourless oil obtained above, K₂CO₃ (36 mmol) and 4,5,6,7–tetrahydro thieno[3,2–*c*] pyridin (22 mmol) in toluene (50 ml) were stirred at room temperature for 3 h. After removing the insoluble solid by filtration, the filtrate was concentrated and separated by flash chromatography to provide the target compound (yield 87%). Colourless single crystals were grown from a solution of petroleum ether and ethyl acetate (1:1 *v*/*v*).

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with C—H = 1.00Å for methine, 0.99Å for methylene and C—H = 0.95Å for the other groups with $U_{iso}(H) = 1.2U_{ea}(C)$.

Figures

Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

3-Bromopropyl 2-(2-chlorophenyl)-2-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)acetate

Crystal data

C ₁₈ H ₁₉ BrClNO ₂ S	F(000) = 872
$M_r = 428.76$	$D_{\rm x} = 1.545 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Cu K α radiation, $\lambda = 1.54187$ Å
Hall symbol: -P 2yn	Cell parameters from 2390 reflections
a = 8.5707 (17) Å	$\theta = 27.5 - 72.3^{\circ}$
b = 18.414 (4) Å	$\mu = 5.52 \text{ mm}^{-1}$
c = 12.206 (2) Å	T = 113 K
$\beta = 106.89 \ (3)^{\circ}$	Prism, colourless
$V = 1843.3 (7) \text{ Å}^3$	$0.22\times0.18\times0.14~mm$
Z = 4	

Data collection

Rigaku Saturn diffractometer	3546 independent reflections
Radiation source: fine-focus sealed tube	3220 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.055$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 72.5^{\circ}, \ \theta_{\text{min}} = 4.5^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -22 \rightarrow 22$
$T_{\min} = 0.377, \ T_{\max} = 0.512$	$l = -14 \rightarrow 11$
18506 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0543P)^{2} + 1.1251P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.69 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between

s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.70621 (4)	0.800075 (19)	0.63501 (3)	0.04494 (13)
Cl1	0.63184 (7)	0.55788 (3)	0.47473 (5)	0.02681 (15)
S1	0.70637 (7)	0.51762 (3)	-0.19215 (5)	0.02410 (14)
01	0.7341 (2)	0.75560 (8)	0.22244 (14)	0.0255 (3)
O2	0.57129 (19)	0.72271 (8)	0.32887 (14)	0.0229 (3)
N1	0.7310 (2)	0.60648 (9)	0.15415 (15)	0.0160 (3)
C1	0.5719 (3)	0.58635 (13)	-0.2481 (2)	0.0247 (5)
H1	0.5313	0.5965	-0.3276	0.030*
C2	0.5302 (3)	0.62460 (12)	-0.16565 (19)	0.0215 (4)
H2	0.4566	0.6644	-0.1807	0.026*
C3	0.6102 (2)	0.59768 (11)	-0.05354 (18)	0.0173 (4)
C4	0.7094 (3)	0.54013 (11)	-0.05401 (18)	0.0186 (4)
C5	0.8122 (3)	0.50420 (12)	0.05215 (19)	0.0212 (4)
H5A	0.9276	0.5188	0.0665	0.025*
H5B	0.8052	0.4508	0.0430	0.025*
C6	0.7515 (3)	0.52699 (11)	0.15262 (18)	0.0190 (4)
H6A	0.6459	0.5030	0.1464	0.023*
H6B	0.8306	0.5112	0.2252	0.023*
C7	0.5925 (3)	0.62862 (11)	0.05604 (18)	0.0190 (4)
H7A	0.5879	0.6823	0.0509	0.023*
H7B	0.4892	0.6113	0.0679	0.023*
C8	0.6982 (2)	0.62768 (11)	0.26063 (17)	0.0168 (4)
H8	0.5998	0.6012	0.2680	0.020*
С9	0.8421 (3)	0.61285 (11)	0.36541 (18)	0.0181 (4)
C10	0.8233 (3)	0.58555 (11)	0.46718 (19)	0.0205 (4)
C11	0.9545 (3)	0.57802 (12)	0.5653 (2)	0.0263 (5)
H11	0.9384	0.5594	0.6338	0.032*
C12	1.1084 (3)	0.59798 (13)	0.5619 (2)	0.0300 (5)
H12	1.1986	0.5940	0.6287	0.036*
C13	1.1313 (3)	0.62372 (14)	0.4615 (2)	0.0310 (5)
H13	1.2378	0.6360	0.4589	0.037*
C14	0.9995 (3)	0.63170 (12)	0.3643 (2)	0.0245 (5)
H14	1.0166	0.6503	0.2961	0.029*
C15	0.6710 (3)	0.70946 (11)	0.26505 (19)	0.0185 (4)
C16	0.5484 (4)	0.79869 (12)	0.3521 (2)	0.0314 (6)
H16A	0.4978	0.8250	0.2798	0.038*
H16B	0.6545	0.8217	0.3907	0.038*
C17	0.4393 (3)	0.80103 (14)	0.4279 (2)	0.0340 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H17A	0.3316	0.7811	0.3849	0.041*
H17B	0.4228	0.8525	0.4455	0.041*
C18	0.4994 (3)	0.76028 (14)	0.5389 (2)	0.0302 (5)
H18A	0.5145	0.7085	0.5227	0.036*
H18B	0.4165	0.7631	0.5809	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02728 (18)	0.0748 (3)	0.03292 (19)	-0.01154 (13)	0.00900 (13)	-0.00602 (13)
Cl1	0.0272 (3)	0.0339 (3)	0.0236 (3)	-0.0020 (2)	0.0142 (2)	0.0024 (2)
S1	0.0222 (3)	0.0319 (3)	0.0195 (3)	0.0020 (2)	0.0081 (2)	-0.0041 (2)
01	0.0295 (9)	0.0216 (7)	0.0257 (8)	-0.0053 (6)	0.0086 (7)	-0.0009 (6)
02	0.0255 (8)	0.0222 (7)	0.0237 (8)	0.0041 (6)	0.0116 (7)	-0.0012 (6)
N1	0.0140 (8)	0.0195 (8)	0.0148 (9)	-0.0004 (6)	0.0047 (7)	-0.0018 (6)
C1	0.0228 (11)	0.0338 (12)	0.0172 (11)	-0.0044 (9)	0.0051 (9)	-0.0004 (9)
C2	0.0176 (11)	0.0251 (10)	0.0203 (11)	0.0000 (8)	0.0029 (8)	0.0013 (8)
C3	0.0130 (10)	0.0218 (10)	0.0173 (10)	-0.0031 (8)	0.0045 (8)	-0.0007 (8)
C4	0.0153 (10)	0.0225 (10)	0.0185 (10)	-0.0015 (8)	0.0059 (8)	-0.0014 (8)
C5	0.0195 (11)	0.0246 (10)	0.0196 (11)	0.0047 (8)	0.0059 (9)	-0.0009 (8)
C6	0.0179 (10)	0.0196 (10)	0.0189 (11)	0.0018 (8)	0.0047 (8)	0.0008 (8)
C7	0.0163 (10)	0.0234 (10)	0.0167 (10)	0.0024 (8)	0.0038 (8)	-0.0010 (8)
C8	0.0148 (10)	0.0201 (10)	0.0163 (10)	-0.0036 (7)	0.0058 (8)	-0.0014 (8)
C9	0.0178 (10)	0.0180 (9)	0.0176 (11)	-0.0003 (8)	0.0036 (8)	-0.0026 (7)
C10	0.0232 (11)	0.0203 (10)	0.0192 (11)	-0.0017 (8)	0.0081 (9)	-0.0031 (8)
C11	0.0326 (13)	0.0258 (11)	0.0175 (11)	0.0011 (9)	0.0025 (9)	-0.0016 (8)
C12	0.0286 (13)	0.0293 (12)	0.0245 (12)	0.0009 (10)	-0.0042 (10)	-0.0032 (9)
C13	0.0186 (12)	0.0335 (12)	0.0363 (14)	-0.0035 (9)	0.0007 (10)	-0.0006 (10)
C14	0.0189 (11)	0.0291 (11)	0.0252 (12)	-0.0042 (9)	0.0058 (9)	0.0020 (9)
C15	0.0152 (10)	0.0215 (10)	0.0163 (10)	-0.0006 (8)	0.0008 (8)	-0.0022 (8)
C16	0.0432 (16)	0.0220 (11)	0.0302 (14)	0.0103 (10)	0.0128 (12)	-0.0002 (9)
C17	0.0275 (13)	0.0368 (13)	0.0380 (15)	0.0113 (10)	0.0102 (11)	-0.0063 (11)
C18	0.0208 (12)	0.0403 (13)	0.0321 (13)	-0.0035 (10)	0.0118 (10)	-0.0084 (10)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br1-C18	1.961 (3)	С7—Н7В	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1—C10	1.746 (2)	C8—C9	1.522 (3)
S1—C41.729 (2)C8—H81.0000O1—C151.204 (3)C9—C101.392 (3)O2—C151.335 (3)C9—C141.397 (3)O2—C161.452 (3)C10—C111.391 (3)N1—C81.461 (3)C11—C121.382 (4)N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	S1—C1	1.714 (2)	C8—C15	1.527 (3)
O1—C151.204 (3)C9—C101.392 (3)O2—C151.335 (3)C9—C141.397 (3)O2—C161.452 (3)C10—C111.391 (3)N1—C81.461 (3)C11—C121.382 (4)N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	S1—C4	1.729 (2)	С8—Н8	1.0000
O2—C151.335 (3)C9—C141.397 (3)O2—C161.452 (3)C10—C111.391 (3)N1—C81.461 (3)C11—C121.382 (4)N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	O1—C15	1.204 (3)	C9—C10	1.392 (3)
O2—C161.452 (3)C10—C111.391 (3)N1—C81.461 (3)C11—C121.382 (4)N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	O2—C15	1.335 (3)	C9—C14	1.397 (3)
N1—C81.461 (3)C11—C121.382 (4)N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	O2—C16	1.452 (3)	C10—C11	1.391 (3)
N1—C61.475 (3)C11—H110.9500N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	N1—C8	1.461 (3)	C11—C12	1.382 (4)
N1—C71.478 (3)C12—C131.380 (4)C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	N1—C6	1.475 (3)	C11—H11	0.9500
C1—C21.358 (3)C12—H120.9500C1—H10.9500C13—C141.388 (3)	N1—C7	1.478 (3)	C12—C13	1.380 (4)
C1—H1 0.9500 C13—C14 1.388 (3)	C1—C2	1.358 (3)	C12—H12	0.9500
	С1—Н1	0.9500	C13—C14	1.388 (3)
C2—C3 1.429 (3) C13—H13 0.9500	C2—C3	1.429 (3)	C13—H13	0.9500

C2—H2	0.9500	C14—H14	0.9500
C3—C4	1.359 (3)	C16—C17	1.495 (4)
C3—C7	1.502 (3)	C16—H16A	0.9900
C4—C5	1.494 (3)	C16—H16B	0.9900
C5—C6	1.524 (3)	C17—C18	1.503 (4)
С5—Н5А	0.9900	C17—H17A	0.9900
С5—Н5В	0.9900	C17—H17B	0.9900
С6—Н6А	0.9900	C18—H18A	0.9900
С6—Н6В	0.9900	C18—H18B	0.9900
С7—Н7А	0.9900		
C1—S1—C4	91.66 (11)	С15—С8—Н8	109.6
C15—O2—C16	115.84 (18)	C10—C9—C14	117.4 (2)
C8—N1—C6	109.32 (16)	C10—C9—C8	122.62 (19)
C8—N1—C7	109.27 (16)	C14—C9—C8	119.78 (19)
C6—N1—C7	109.52 (16)	C9—C10—C11	122.0 (2)
C2—C1—S1	112.29 (17)	C9—C10—Cl1	120.45 (17)
C2—C1—H1	123.9	C11—C10—Cl1	117.54 (18)
S1—C1—H1	123.9	C12—C11—C10	119.2 (2)
C1—C2—C3	111.9 (2)	C12—C11—H11	120.4
C1—C2—H2	124.1	C10—C11—H11	120.4
C3—C2—H2	124.1	C13—C12—C11	120.1 (2)
C4—C3—C2	113.13 (19)	С13—С12—Н12	119.9
C4—C3—C7	121.65 (19)	С11—С12—Н12	119.9
C2—C3—C7	125.21 (19)	C12—C13—C14	120.3 (2)
C3—C4—C5	123.63 (19)	С12—С13—Н13	119.8
C3—C4—S1	111.03 (16)	C14—C13—H13	119.8
C5—C4—S1	125.28 (16)	C13—C14—C9	120.9 (2)
C4—C5—C6	108.83 (17)	C13—C14—H14	119.5
C4—C5—H5A	109.9	C9—C14—H14	119.5
С6—С5—Н5А	109.9	O1—C15—O2	124.55 (19)
C4—C5—H5B	109.9	O1—C15—C8	126.0 (2)
С6—С5—Н5В	109.9	O2—C15—C8	109.33 (17)
H5A—C5—H5B	108.3	O2—C16—C17	107.0 (2)
N1—C6—C5	110.68 (17)	O2—C16—H16A	110.3
N1—C6—H6A	109.5	C17—C16—H16A	110.3
С5—С6—Н6А	109.5	O2—C16—H16B	110.3
N1—C6—H6B	109.5	C17—C16—H16B	110.3
С5—С6—Н6В	109.5	H16A—C16—H16B	108.6
H6A—C6—H6B	108.1	C16—C17—C18	115.6 (2)
N1—C7—C3	110.59 (17)	C16—C17—H17A	108.4
N1—C7—H7A	109.5	С18—С17—Н17А	108.4
С3—С7—Н7А	109.5	С16—С17—Н17В	108.4
N1—C7—H7B	109.5	С18—С17—Н17В	108.4
С3—С7—Н7В	109.5	H17A—C17—H17B	107.4
H7A—C7—H7B	108.1	C17—C18—Br1	111.47 (18)
N1—C8—C9	112.41 (17)	C17—C18—H18A	109.3
N1—C8—C15	111.46 (17)	Br1-C18-H18A	109.3
C9—C8—C15	104.01 (16)	C17—C18—H18B	109.3
N1—C8—H8	109.6	Br1—C18—H18B	109.3

supplementary materials

С9—С8—Н8	109.6	H18A—C18—H18B	108.0
C4—S1—C1—C2	-0.33 (18)	C15—C8—C9—C10	99.5 (2)
S1—C1—C2—C3	0.3 (2)	N1-C8-C9-C14	45.0 (3)
C1—C2—C3—C4	-0.1 (3)	C15—C8—C9—C14	-75.8 (2)
C1—C2—C3—C7	179.0 (2)	C14—C9—C10—C11	1.0 (3)
C2—C3—C4—C5	177.21 (19)	C8—C9—C10—C11	-174.4 (2)
C7—C3—C4—C5	-2.0 (3)	C14—C9—C10—Cl1	-177.92 (16)
C2—C3—C4—S1	-0.1 (2)	C8—C9—C10—Cl1	6.7 (3)
C7—C3—C4—S1	-179.26 (15)	C9—C10—C11—C12	-0.2 (3)
C1—S1—C4—C3	0.24 (17)	Cl1—C10—C11—C12	178.70 (18)
C1—S1—C4—C5	-177.02 (19)	C10-C11-C12-C13	-1.2 (4)
C3—C4—C5—C6	16.2 (3)	C11-C12-C13-C14	1.9 (4)
S1—C4—C5—C6	-166.92 (16)	C12—C13—C14—C9	-1.1 (4)
C8—N1—C6—C5	-171.04 (17)	C10-C9-C14-C13	-0.3 (3)
C7—N1—C6—C5	69.3 (2)	C8—C9—C14—C13	175.2 (2)
C4—C5—C6—N1	-48.6 (2)	C16—O2—C15—O1	-3.8 (3)
C8—N1—C7—C3	-171.30 (16)	C16—O2—C15—C8	173.21 (19)
C6—N1—C7—C3	-51.6 (2)	N1-C8-C15-O1	-32.0 (3)
C4—C3—C7—N1	19.3 (3)	C9—C8—C15—O1	89.4 (3)
C2—C3—C7—N1	-159.78 (19)	N1-C8-C15-O2	151.02 (17)
C6—N1—C8—C9	65.3 (2)	C9—C8—C15—O2	-87.6 (2)
C7—N1—C8—C9	-174.82 (16)	C15—O2—C16—C17	-177.7 (2)
C6—N1—C8—C15	-178.34 (17)	O2-C16-C17-C18	57.6 (3)
C7—N1—C8—C15	-58.5 (2)	C16-C17-C18-Br1	61.8 (3)
N1-C8-C9-C10	-139.74 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
C2—H2···O1 ⁱ	0.95	2.43	3.340 (3)	161.
С7—Н7А…О1	0.99	2.50	3.103 (3)	119.
C8—H8···Cl1	1.00	2.58	3.110 (2)	113.
C16—H16B···Br1	0.99	2.91	3.323 (3)	106.
Symmetry codes: (i) $x-1/2, -y+3/2, z-1/2$.				

